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In the present paper the study of controlled mechanical systems, which was 
started in El],, is continued. The general questions in the analytic theory 
of controlled systems are considered. It is shown that tha equations of 
motion of the controlled system may be written In all the fundamental forms: 
as Lagrange equations, as canonlc equations, and as Appell’s equations. The 
canonic transformations of holonomlc controlled systems are considered. The 
equations of motion of nonholonomlc controlled systems are derived. 

The indices encountered in the paper take the following values: 

P = 1, 2, . ..) a; n=l, 2, . . . . b; i=1,2, . . . . 3n; a, #l=1,2, . . . . s=3n-aa-jb; 
z, Q = 1, 2, . ..? p; h, p = 1, 2, ‘I.., 1; 6 = 1, 2, . . . . p - 1; y = 1, 2, . . . . c; 

x- = 1, 2, . ..* s-c; Y = 1, 2, . . . . k 

1, A system of n particles is moving relative to a fixed Cartesian 

coordinate system. We shall denote the coordinates and the mass of the first 

point of the ‘system by X, , x2, x3 and ml * map m3 , respectively, of the 

second point by x4, x5, x, and m,, m5, “5 etc. 

Let the system be subject to constraints among which there are some para- 

metric ones. We shall denote the control parameters of the system by ul, 

11*,...2 l.+ . Let 

fP(GQ, *es, %I) = 0, cpx(G%...,%, Ul,..., WC) = 0 WI 

be the constraint equations of the system. 

The constraints on the system will be taken as ideal. Then, the D’Alem- 

bert-Lagrange principle is valid for it [l]; for the true acceleration of 

the system, the relation 

tl (mixin - Xi) 6Xi = 0 (4.2) 

holds for all the possible displacements of the system. The latter are 

given [l] by the relations 
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(1.3) 

The quantities X1 ,...,X,, In the relation (1.2) represent components 

along the coordinate axes of the active forces acting on the system. We 

shall take the quantities X1, . . . . X 3n to be definite functions of time, of 
the system coordinates, and of the velocities of the system points, and also 

of the system control parameters. The latter assumption shows that the 

system admits of dynamic control as well as kinematic. 

The advantage of controlled systems over uncontrolled ones Is the possi- 

bility of action through the control parameters on the motion of the system. 

The control parameters, by their very nature, are undefined variables which 

may be dealt with arbitrary. By entering Into the equations of motion of 

the controlled system (through the_constralnts on the system and through the 

forces acting on It), the control parameters essentially open up to the 

Indicated system of equations. The equations of motion, therefore, by them- 

selves do not determine the motion of the controlled system; this latter Is 

determined only after there Is given any conditions whatsoever which would 

permit us to close the system of equations of motion of the controlled sys- 

tem. Here Is the source of the flexlblllty of the controlled systems. 

2. Let xl, . . .,x, be some functions of time, of the coordinates, and per- 

haps, of the control parameters. We write Equations 

Xi&, %,...,%a, R,...rQ) = qa (2.1) 

and use them to supplement the system of equations (l.l).. Let us assume 

that the total number of Equations (1.1) and (2.1) equals 5, and that the 

functions X, are such that the system of equations (1.1) and (2.1) does 

not depend on the variables x1 > * * * 1x3, * Then this system can be solved 

for x1 ,..,,xJn . Thus we have 

Xi = Xi (t, ql,...,qs, Ul,...,&f) (2.2) 

For fixed values of the control parameters there exists a one-to-one 

correspondence between the quantities gl,..., 4, and the assumed constraints 

on the position of the system. By analoiy with the mechanics of uncontrol- 

led systems, we shall call the quantities q1,...,$7, the generalized or 

Lagranglan coordinates of the controlled mechanical system being considered. 

Equalities (2.2) give explicit expressions for the Cartesian, coordlilate sys- 

tem In terms of Its generalized coordinates, of time, and of the control 

parameters. It Is not difficult to show that equalities (2.2) lead to the 

following explicit expressions for the possible displacements of the system 

(2.3) 

where bq,,..., bq, are arbitrary quantities. 
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Let us substitute Expressions (2.3) for the possible displacements of the 
system Into the fundamental equation of mechanics (1.2). We get 

Let us transform 

the equality 

the left-hand side of this equation. First of all,from 

obtained by differentiating (2.2) with respect to time, we find 

axi axi d axi azi= 

ap, =c') dfap,=aq, (2.5) 

Note. It should be noted that here and ln what follows, the control 
parameters, along with the system coordinates, are taken to be independent 
variables. 

Taking equality (2.5) into account, we have 

Here r Is the Mnetic energy of the system. By introducing these ex- 

pressions Into relations (2.4), we write them as 

d aT ----+-Q.) = 0 
dt aqa’ 

0. 
(Qaz XXiz) (2.6) 

Here the Q, are the usual generalized forces. The quantities 6q, are 

arbitrary and,*therefore, from (2.6) we find 

d aT BT -- ---=Qa 
dt aq,f *q, (2.7) 

Thus, the equations of motion of the controlled system have 

the usual second-order Lagrange equations. 
the form of 

If the forces acting on the system possess a force function u, then the 
generalized forces g, may be represented in the form g, = au/ag, , and 
Equations (2.7) reduced to the form 

d a.c aL ----= 
dt aqo’ aqa 0 (2.81 

where .& = 2' + U is the Lagrange function of the system. 

The number of equations In each of the systems (2.7) and (2.8) equals the 

number of generrlized coordinates. However, besides the generalized coordi- 
nates, these equations also contain the control parameters which still re- 

main as completely undetermined variables. Therefore, the Indicated systems 
of equations are open and, as noted at the end of the preceding Section, the 
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motion of the system is not determined by them. 

3, Let us denote 

poL = aTI dq,’ (3.9) 

and let us call the quantities p the generalized momenta of the system. 

Let us introduce into considerat& the function 

H* = 2 ppqpt - T (3.2) 

With the aid of (3.1) we eliminate from It the generalized velocities pS'. 

Then y* will be a function of time, of the generalized coordinates and mo- 

menta, and also of the control parameters and their derivatives. Let us 

find the derlvatlves of x* with respect to pa and (I~ . &y differenti- 
ating H* as a composite function and taking (3.1) into consideration, we 

(3.3) 

Let us now take the Lagrange Equations (2.7). Using equality (3.1) it 

is written as 

Pa’ = E + Qa 
By combining these equations with (3.3) we pass to the canonic equations 

aH* 
Qa’ = ap, * pap = -ag+ Qa (3.4) 

Equations (3.4) have a form of the canonic H~~ltonl~ equations if the 

forces acting on the system admit of a force function. Indeed, by intro- 

ducing in this case the Hamiltcn function H = y* - u , we immediately,get 

afi qar -= K ) 

l?H pa8 = - - 
aQa 

(3.5) 

Thus, the equations of motion of the controlled system In the general 

case may be written In the form of canonic equations. However, if the for- 

ces acting on the system admit of a force function, then these equations 

reduce to the canonlc Hamiltonian equations. 

4. In the preceding Sections It was shown that the equations of motion 

of a controlled system may be written as second-order Lagrange equations 

and as canonic equations. Let us show that they may be written In a third 

fundamental form I.e. as Appell equations. To do this let us differentiate 

twice with respect to time, the expressions (2.2) for the Cartesian coordl- 

nates of the system points. We get the equalities 

where the dots stand for terms not depending on the second derivatives of 
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the generalized coordinates. From these equalities we find 

C$" ax, 

ap,"=a4, 

By Substituting the latter identities into Equations (2.3) POP the p0~81- 

ble displacements of the system, we obtain 

Using these equatlotis let us transform the kinematic part of the funda- 

mental equation of mechanics (1.2), We have 

where by s we denote the acceleration energy of the system 

Cm the other hand, on the basis of equalities (2.31, w(s find 

where 4Ju are the generalized forces. 

The fundamental equation of mechanics oan now be written as 

Zi $%- - Qa) 6qa = 0 
a 

Hence, because of the independenc?e of the quantltles bq, we obtain the 

required equation as 
-_a-Qa=O 
Qa VW 

5. Let us now consider a canonic transformation of the equations of 

motion of the controlled mechanical system. 

The problem is posed in the following way: among all the possible trans- 

formations 
4s * = qa*kI, !JT $3 4; pa* = pa* (q, P1 4 4 (5-j ‘) 

of the canonic variables 4 and p to 2n new variables Q* and p* , to 

find such under which the Hamiltotian form of equations (3.5) of motion of 
the controlled mechanical system Is preserved. The control parameters, 

which along with the generalized coordtites and momenta are variables of 

the system, participate In transformations (5.1) but are themselves not sub- 

ject to transformation. 

The peculiarity of the statement of the problem of the canonic transfor- 
mations of the eqxx8tfons of motion of controlled mechanical systems, consists 

In the following: it is required to find such canonic transfonaatfons of a 

part of the variables of the system of equations of motion having a Hamil- 

tonian form, that under these transformation the equations for the trans- 
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formed variables preserve the Hamiltonian form. 

The considered question is closely connected with Pfaffian forms; more 
precisely, to the properties of invarl&t connective forms and their adjoint 

system. Let us first consider this in a general formulation. Let us take 

any Pfafflan form 
0 = zA&, 

where the A, are some functions of the variables 5 . The bilinear co- 
variant of this form Is given by the expression [2] 

where a: and b5 are two groups of differentials of variables 5 , An 
lmpcrtant property of a bilinear covarlant Is its invariance to changes in 

the variables: the transformed bilinear covariant will be the bilinear co- 

variant of the transformed form; in other words 

aA,* - - ‘$) d&*6&,+ = [ZI (‘$ - 2) c&3&, 
E.** 5* (5.2) 

* 5 
where 

ET* = Et" (El, . * -1 &A 

The system of equations 

by which the bilinear covarlant of the given Pfaffian form vanishes identi- 

cally relative to the &co , is called the adjoint system of the given form. 

As was the bilinear covarlant, the adjoint system is invariantly (with re- 

spect to changes in the variables) connected with the form UJ ; the trans- 

formed adjoint system is the adjoint system of the transformed form. 

The properties of the invariant connections of the billnear covariant and 

the adjoint systtm with the Pfaffian form hold in conformity with the same 

transformation of the variables. Let us assume that the transformation 

affects only a part of the variables 5 . Let these be the first f vari- 

ables. Then 
Ea.* = Er* (ED * * *1 Ep), E*M = 51&A (5.3) 

Let us set &+a = dEt+a, which can be done because of the arbitrariness 

and independence of the differential d$ and 65 . Let us show that in 

this case the bilinear covariant A vanishes by virtue of &watiOnS 

=( 
&4, aA, 
-I- 

acx at, d& = 0 (h = 1, . * ., I) 

Indeed, it is not difficult to convince ourselves that because of the 

conditions 8&+s = &$+a and of Equations (5.4), the bilinear covariant 

reduces to 
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On the other hand, from system (5.4) we find 

=( 
and, consequently, the bilinear covariant b is written as 

which is what was required. Let us now take the bilinear covariant 

of the transformed form UJ . By what was just shown, this vanishes by virtue 

of Equations 
(5.5) 

However, because of relations (5.2) the billnear covarlant b* vanishes 

by virtue of Equations (5.4). Consequently, Equations (5.5) are equivalent 

to Equations (5.4). 

The system of equations (5.4) Is a subsystem of the adjoint system of 

form ~1 . By convention we shall call it the partial adjollnt system of form 

w in the variables gr,..., ct . Then the obtained result can be formula- 

ted in the following way: under a partial transformation of variables (5.3) 

the Partial adjoint system Is lnvarlantly connected with its own form. 

Let us now return to the problem of the canonic transformations of the 

equations of motion of the controlled mechanical system. 

Let us prove a theorem. If tr~sformations (5.1) (in 

variables 9, p, tl, t) identically satisfy the relation 

the space of the 

dW (5.6) 

where x, XV and Y are some functions of the generalized coordinates of 

the momenta, of time, and of the control parameters, then transformations 

(5.1) are canonic. Indeed, identity (5.6), being rewritten as 

signifies that as a result of transformations (5.1) the form occurring on 

the right-hand side is transformed to the form occurring on the left-hand 

s/de. 

It is easy to verify that the partial adjoint systems of these forms, 

under a transformation of variables, will be, respectively, the system (3.5f 
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(5.7) 

By virtue of the previously indicated property of invariant connection of 

the form and its partial adjoint system, the system (5.7) should be obtained 
as a result of transforming of the system (3.5). 

On the other hand, system (5.7) has the Hamilton form 

@a* a0 
- = 

dt w’ 
dP,* 30 
dt= 

-- 
@a* (@ = H + K + I): Kvuu’) (5.8) 

Hence transformations (5.1) are canonic, which is what was required. 

The presence in (5.6) of the undetermined functions K and x allows 

us to consider as a condition of canonic transformation, instead gf-(5.6), 

the simpler condition 

in which, however, the differentiation Is carried out for constant t and 

Uv * Condition (5.9) is convenient for an explicit representation of the 

canonic transformations In terms of generating functions. Let us assume 

that transfor~tions (5.1) are such that 

a&,*, $ f 

a (PI, 
. Jn*l + o 

Fs> . . ., P,) 

Then, the first group of equalltles in ~(5.1) can be solved with respect 

to the canonlc momenta p and, consequently, the variables q and p* can 

be taken to be independent. Under these conditions, identity (5.9) gives 

Pa * _; dT%'i dg,", pa = -- aw f Bq, (5.10) 

The function W Is called the generating function of the canonic trans- 

formations. As a result of the canonic transformations, system (3.5) trans- 

forms to system (5.8). 

Let us find expressions for the functions K and K, in terms of the 

generating function. For this we substitute Expressions (5.10) into identi- 

ty (5.6). By expanding * dW in it, we find 

AZ=---f?wrat, K, = - dW I au, 

The new Hanilton function thus in 

fD=H 
arv 

---YE’ -- Cgl!” 
” 

Let us Illustrate the results obtained by a simple example. Let there be 
given the canonlc system 

8H dp Mz -- 
-%- ap 

-=-- 
dr a(l (H = Q” + $4 



Let us subject It to canonic transformations with a generating fun&ion 
w= tsqp** Then the transformed system is 

dq+ SD ap+ 30 --_- 
dt ap* ’ dt -=--7 acl 

aw 
@=R--~u’= [qu-f-p- qq*a’J) (5.11) 

P’s 

The square brackets here denote the passage to the new variables a* and 
Let us show that this is indeed so. By substituting the expression for 

W into Equations (5.10) we find the explicit forms of the canonic transfor- 
mations p* = pu, p = - P+u . 

In the original system let us now expand the function y and in it pass 
to the new variables. We get 

On the other hand, let us expand system (S.11). The function P in vari- 
ables p* anti p* Is written as 

@=PL-+-_*~*~ 

By substituting this Into system (5.12) we again arrive at system (5.12). 
Which is what was required, 

6, Up to this point the constraints on the system have beer_ taken to be 

holonomic, Let us now assume that the constraint equations (includincr, the 

parametrid constraints) may depend on the velocities of the system points. 

Let 57 I,...sq, be the Lagrange coordinates of the system and let the system 

be subject to the no~olono~c constraints 

fly (al* * * *, q8, ql', * * *, &', t, +, . . ", uk) - 0 (W 

Note. Nat all equations of system (6.1) need contain the control 
parameters, The form of (6.1) for the nonholonomic constraint equations of 
the system is taken solely in order to simplify the computations. 

An example of a system with constraints of form (6.1) is the ordinary 
bicycle rolling without slippage on a horizontal plane. We can be convinced 
of this by setting up the constraint equations for the bicycle. The position 
of the bicycle, obviously, will be given if we are given the coordinates x 
and y of the center of the rear wheel of the bicycle, the angle $ of the 
rotation of the bicycle frame around a Vertical axis, the Inclination 6 of 
the bicycle frame to the horizon, the turn u of the steering bar (control 
parsmeter), Snd the angles cp and 9, of the turn6 around their own axes 
of, respectively, the rear and front wheels of the bicycle. For simplicity 
we shall consider that the bicycle remains vertical. In this case the con- 
straint equations to which the rear wheel of the bicycle is subject, will be 

where Q is the radius of the bicycle wheel. By tak.ing fnto account that 
the coordinates of the center of the front wheel of the bicyole will be 

z -1. h coS& y + bsin$ 

where & is the distance between the centers of the wheels, for the oon- 
stratits on the front wheel of the bicycle we have the analogous equations 

(5 + E zos*))'+ "I$ coS($ + uf = 0, (y + b sin*)' + eg3'sin(* -f tr) = 0 

These equations are easily tranaformed to the following final form 

cp'+- %$ cos u = 0, w + at&sin u = 0 (66.3 
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Equations 
straints for 

(j.2) and (6.3) form a complete system of nonholonomic con- 
tne bicycle. Obviously, they have the form of Equations (6.1). 

Summarizing the definition of possible displacement as taken for holo- 

nomic controlled systems (relations (1.3)), let us define the possible dis- 

placements of controlled systems In the presence of constraints (6,1), by 

the relations Q?Y 

x;f3q9 = 0 
cl 

(6.4 
Let us find the equations of motion of the system under constraints (6.1). 

After Introduction of Lagrange coordinates, the fundamental equation of 

mechanics is written as 

=i 

d ST 6’T ----- 
dt %,’ aa, 89, = 0 

In case the constraints (6.1) are absent, all the &p, are independent, 

and from relation (6.5) follows the Lagrange equations for holonomic systems. 

In the considered case of a nonholonomic system, the quantities bp, are no 

longer independent. They are constrained by relations (6.4). In this case 

the equatibns of motion of the system with multipliers are easily obtained 

from (6.5). They have the form 

d aT aT ----= 
dt a¶,’ aq, (6.6) 

where h 
Y 

are the multipliers, subject to determination. 

The equations of motion of nonholonomic controlled systems may be written 

also in the form of Appell equations. To this end, let us supplement Equa- 

tions (6.1) by the relations 

in such a way that the system of relations (6.1) and (6.7) will be solvable 

with respect to the derivatives Pl',...,~,' . By taking into account that 
the quantities UI~ denote the numerical values uf the functions Cx for 

values of the arguments satisfying the constraint equations (6.1), we con- 

clude by virtue of the assumptions made with respect to (6.7) that relations 

(6.1) and (6.7) establish a one-to-one correspondence between the arbitrary 

UJ and the manifold of kinematically admissible velocities of the system. 

0: the other hand, this correspondence is given by (6.7), on the other, by 

the relations 
Qu' = (Pa (4x7 . . ., qs, 01, . . 6, (‘&c, t, ul,.* * * , uk) 68) 

which are obtained by solving relations (6.1) and (6.7). 

Let us define the quantities &@, by the equalities 

Relations (6.9),together with (6.4), establish a one-to-one corresponence 

between the arbltrary quantities 66, and the possible displacements of the 



system. Indeed, a specific system of quantities a@,. by virtue of (6-g) 
corresponds to every posslbfe displacement of the 3ystem. On the ather hand, 

the deter~ts of systems (6.4) and f6.9) will be the &mAUri~ of Wstems 

(6.1) and (6.71, and these latter are different from zero. Consequently, 

the system of relations (6.4) and (6.9) may be solved with respect to 6q, 

and hence to each system of values &?% there corresponds a possfble dis- 

placement of the mechanical system. 

It is not diPflcult to see that the equalities expreasd.ng 4, in terms 

of 66,, may be written 

To prove this let us 

lation (6.4), we get 

(6.10) 

substitute the latter expression for bPc, into re- 

(6.11) 

But by (6.4) and (6.8) 

Therefore, equality (6.11) is satisfied identically with respect to 86~. 
Which 3.53 what we required. 

Let ua introduce the acceleration energy S (qr, q’, qNr t, u,u’). Then the 

fundamental equation of mechanics may be written in the form (4 1). 

Let us note that from equality (6.8) foLlova the identity 

%-k' if% 
w===ao, 

and, consequently, equality (6.10) may be written as 

In the assumptions of equalities (6.10) and (6.12) let us now transform 

the fundsmental equation of mechanics (4.1). We have 

where S* is the acceleration energy transformed to the variables w, , 

Equality (6.13) is satisfied Par all 86,. By taking into account that 

the latter are completely arbitrary, from (6.13) we get 

as* 
a? - Qx* = 0 
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This Is the desired equation. The choice of quantities UI Is connected 

with relations (6.7), which practically are given arbitrarily: Therefore, 

the Independents of the derivatives 9,' may be taken as the quantities 
wx* 

In this case the equations of motion of the controlled system under consider- 

ation can be written completely In terms of a Lagrange coordlnate'system. 
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